Factors controlling normal fault offset in an ideal brittle layer

نویسندگان

  • Luc L. Lavier
  • W. Roger Buck
  • Alexei N. B. Poliakov
چکیده

We study the physical processes controlling the development and evolution of normal faults by analyzing numerical experiments of extension of an ideal two-dimensional elastic-plastic (brittle) layer floating on an inviscid fluid. The yield stress of the layer is the sum of the layer cohesion and its frictional stress. Faults are initiated by a small plastic flaw in the layer. We get finite fault offset when we make fault cohesion decrease with strain. Even in this highly idealized system we vary six physical parameters: the initial cohesion of the layer, the thickness of the layer, the rate of cohesion reduction with plastic strain, the friction coefficient, the flaw size and the fault width. We obtain two main types of faulting behavior: (1) multiple major faults with small offset and (2) single major fault that can develop very large offset. We show that only two parameters control these different types of faulting patterns: (1) the brittle layer thickness for a given cohesion and (2) the rate of cohesion reduction with strain. For a large brittle layer thickness (> 22 km with 44 MPa of cohesion), extension always leads to multiple faults distributed over the width of the layer. For a smaller brittle layer thickness the fault pattern is dependent on the rate of fault weakening: a very slow rate of weakening leads to a very large offset fault and a fast rate of weakening leads to an asymmetric graben and eventually to a very large offset fault. When the offset is very large, the model produces major features of the pattern of topography and faulting seen in some metamorphic ore complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing Surface Structures on Icy Satellites: a Physical Analogue

Introduction: The existence of global oceans on some icy satellites—Europa and Enceladus, for example—implies the presence of a ductile warm ice layer. However, the role of such a ductile layer in controlling icy-surface deformation has never been systematically investigated nor quantified. We aim to address this issue by combining previous observations from geomorphological mapping of surface ...

متن کامل

Fault zone strength and failure criteria

This paper discusses Coulomb failure criteria for brittle deformation of intact rock and fault gouge. Data are presented from laboratory experiments designed to identify the critical gouge layer thickness required to effect a transition from the standard Coulomb criterion to a modified failure law (referred to as Coulomb plasticity) appropriate for simple shear of a gouge layer. Experiments wer...

متن کامل

Pull-apart basin formation and development in narrow transform zones with application to the Dead Sea Basin

[1] Contrary to other examples, like Death Valley, California, and the Sea of Marmara, Turkey, the Dead Sea-type pull-apart basins form within a narrow transform corridor between strike-slip faults that are less than 10 km apart, much smaller than the crustal thickness of 35 km. In this paper we investigate the role of fault zone width versus thickness and rheology on the mechanics of pull-apar...

متن کامل

Structural concepts for Soltanieh fault zone (NW Iran)

Active deformation in Alborz range is due to N-S convergence between Arabia and Eurasia. This paper provides geomorphic traces of regional deformation in NW Iran in order to characterize active faulting on major faults. Soltanieh and North Zanjan fault systems are involved in convergence boundary extent between South Caspian Basin and Central Iran. Soltanieh and North Zanjan faults are major re...

متن کامل

Fluid-rich damage zone of an ancient out-of-sequence thrust, Kodiak Islands, Alaska

[1] The Uganik Thrust is a fossil out-of-sequence thrust fault which was active over a period of 3 Ma during the early Tertiary until activity ceased with the subduction of the Kula-Farallon spreading ridge at 57 Ma. During this period the fault experienced at least 1 km of throw and developed a strongly asymmetric damage zone. The brittle damage zone in the footwall of the fault acted as a con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007